Genetic evolution of radial basis function coverage using orthogonal niches
نویسنده
چکیده
A well-performing set of radial basis functions (RBFs) can emerge from genetic competition among individual RBFs. Genetic selection of the individual RBFs is based on credit sharing which localizes competition within orthogonal niches. These orthogonal niches are derived using singular value decomposition and are used to apportion credit for the overall performance of the RBF network among individual nonorthogonal RBFs. Niche-based credit apportionment facilitates competition to fill each niche and hence to cover the training data. The resulting genetic algorithm yields RBF networks with better prediction performance on the Mackey-Glass chaotic time series than RBF networks produced by the orthogonal least squares method and by k-means clustering.
منابع مشابه
Numerical Solution of The First-Order Evolution Equations by Radial Basis Function
In this work, we consider the nonlinear first-order evolution equations: $u_t=f(x,t,u,u_x,u_{xx})$ for $0 to initial condition $u(x,0)=g(x)$, where $u$ is a function of $x$ and $t$ and $f$ is a known analytic function. The purpose of this paper is to introduce the method of RBF to existing method in solving nonlinear first-ord...
متن کاملTuning Shape Parameter of Radial Basis Functions in Zooming Images using Genetic Algorithm
Image zooming is one of the current issues of image processing where maintaining the quality and structure of the zoomed image is important. To zoom an image, it is necessary that the extra pixels be placed in the data of the image. Adding the data to the image must be consistent with the texture in the image and not to create artificial blocks. In this study, the required pixels are estimated ...
متن کاملNumerical Solution of Nonlinear PDEs by Using Two-Level Iterative Techniques and Radial Basis Functions
Radial basis function method has been used to handle linear and nonlinear equations. The purpose of this paper is to introduce the method of RBF to an existing method in solving nonlinear two-level iterative techniques and also the method is implemented to four numerical examples. The results reveal that the technique is very effective and simple. Th...
متن کاملCombined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
The paper presents a two-level learning method for radial basis function (RBF) networks. A regularized orthogonal least squares (ROLS) algorithm is employed at the lower level to construct RBF networks while the two key learning parameters, the regularization parameter and the RBF width, are optimized using a genetic algorithm (GA) at the upper level. Nonlinear time series modeling and predicti...
متن کاملApproximation of a Fuzzy Function by Using Radial Basis Functions Interpolation
In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 7 6 شماره
صفحات -
تاریخ انتشار 1996